Answer with Explanation:
We are given that
Weight of an ore sample=17.5 N
Tension in the cord=11.2 N
We have to find the total volume and the density of the sample.
We know that
Tension, T=
=buoyancy force
T=Tension force
W=Weight
By using the formula

N

Where
=Volume of object
=Density of water
=Acceleration due to gravity
Substitute the values then we get


Volume of sample=
Density of sample,
Where mass of ore sample=1.79 kg
Substitute the values then, we get

Density of the sample=
Answer:
Average velocity v = 21.18 m/s
Average acceleration a = 2 m/s^2
Explanation:
Average speed equals the total distance travelled divided by the total time taken.
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
Average acceleration equals the change in velocity divided by change in time.
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
Where;
v1 and v2 are velocities at time t1 and t2 respectively.
And x1 and x2 are positions at time t1 and t2 respectively.
Given;
t1 = 3.0s
t2 = 20.0s
v1 = 11 m/s
v2 = 45 m/s
x1 = 25 m
x2 = 385 m
Substituting the values;
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
v = (385-25)/(20-3)
v = 21.18 m/s
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
a = (45-11)/(20-3)
a = 2 m/s^2
Answer: Yes.
Explanation:
Assuming Earth and Moon are isolated is space, it is possible to have a point where Earth and Moon will pull at an object with equal force.
That point will be closer to the Moon than the Earth because Moon's gravitational field strength is weaker than Earth's gravitational field strength.
Answer:
The correct answer to the following question will be "41.87 m".
Explanation:
The given values are:
The speed of trooper = 
The velocity of red car = 
Now,
A red car goes as far as possible until the speed or velocity of the troops is the same as that of of the red car at
(∵
)

then,
The distance covered by trooper,


The distance covered by red car,
= 
= 
Maximum distance = 
=