Answer:
THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.
Explanation:
The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.
Answer:
True
Explanation:
The nucleus contains all of the mass of the atom. Almost all of the mass of the atoms is made up of protons and neutrons.
The absolute refractive index is equal to the speed of light of the wave in air divided by the speed of light in the second medium. This means that it is equal to 3 x10^8 / 1.71 x10^8. This means the answer is 1.75
Answer:
The angle between the emergent blue and red light is 
Explanation:
We have according to Snell's law

Since medium from which light enter's is air thus 
Thus for blue incident light we have

Similarly using the same procedure for red light we have

Thus the absolute value of angle between the refracted blue and red light is

1 Answer. 50% of the lunar surface is always illuminated by Sun