Hello!
Use the formula:
M = k * p
Data:
M = Mechanic energy
k = Kinetic energy
p = Potencial energy
Descomposing:
M = (0,5*mv²) + (mgh)
Replacing:
M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)
M = 16317,28 J + 26076,54 J
M = 42393,82 J
The mechanic energy is <u>42393,82 Joules.</u>
This question involves the concepts of dynamic pressure, volume flow rate, and flow speed.
It will take "5.1 hours" to fill the pool.
First, we will use the formula for the dynamic pressure to find out the flow speed of water:

where,
v = flow speed = ?
P = Dynamic Pressure = 55 psi
= 379212 Pa
= density of water = 1000 kg/m³
Therefore,

v = 27.54 m/s
Now, we will use the formula for volume flow rate of water coming from the hose to find out the time taken by the pool to be filled:

where,
t = time to fill the pool = ?
A = Area of the mouth of hose =
= 1.98 x 10⁻⁴ m²
V = Volume of the pool = (Area of pool)(depth of pool) = A(1.524 m)
V =
= 100.1 m³
Therefore,

<u>t = 18353.5 s = 305.9 min = 5.1 hours</u>
Learn more about dynamic pressure here:
brainly.com/question/13155610?referrer=searchResults
Answer:
Explanation:
Let assume begins movement at zero point, that is, height is equal to zero. The block has an initial linear kinetic energy and no gravitational potential energy and end with no linear kinetic energy, some gravitational potential energy and work losses due to slide friction. In mathematical terms, this system can be model as follows:

Where
are linear kinetic energy, gravitational potential energy and work, respectively.
Abiotic factors are the nonliving physical and chemical components of an ecosystem, while biotic factors are the living components of an ecosystem. Both types of factors affect reproduction and survival