1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
14

The second ionization energy is the energy required to remove the _______ Electron after a __________ one has been removed.

Physics
1 answer:
Sindrei [870]3 years ago
6 0

The second ionization energy is the energy required to remove the <u>second </u>electron after a <u>valence</u> one has been removed.

<h3><u>Explanation:</u></h3>

For an element, the first ionization energy is defined as the amount of energy required to remove one electron from the outermost valence shell of a neutral atom. Removing one electron increases the number of protons, making it a 1+ ion.  

The nucleus (protons) has more bonding to the electrons with negative charge and thus more energy is required if another electron needs to be removed. This higher energy required to remove second electron from a 1+ ion (after the first one has been removed) is termed as the second ionization energy. Second ionization energy leads to formation of a 2+ ion. Similarly, third ionization energy is higher than second ionization energy.

You might be interested in
Which of the following did not occur during the collapse of the solar nebula?
vaieri [72.5K]
If this is one of the following, it's correct
<span>"concentrating denser materials nearer the sun"
I hope this helps!
My source is Quizlet</span>
7 0
3 years ago
Is there any electric field inside a conductor carrying an electric current ??
denis-greek [22]
I believe so not 100% sure but i am about 50% sure 
3 0
3 years ago
A python can detect thermal radiation from objects that differ in temperature from their environment as long as the received int
yanalaym [24]

Answer:

10.52 m

Explanation:

The power radiated by a body is given by

P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴

P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ ×  0.97 × 1.8 m² × (303)⁴ = 834.45 W

This is the power radiated by the human body.

The intensity I = P/A where A = 4πr² where r = distance from human body.

I = P/4πr²

r = (√P/πI)/2

If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus

r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m

So, the maximum distance at which a python could detect your presence is 10.52 m.

3 0
3 years ago
The force of gas particles against the walls of a container is called ________
Liono4ka [1.6K]

Answer:

the answer is pressure

8 0
3 years ago
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
1 year ago
Other questions:
  • A physicist is calibrating a spectrometer that uses a diffraction grating to separate light in order of increasing wavelength (λ
    6·1 answer
  • Three-fourths of the Earth's surface is covered by water. The water cycle includes these water sources evaporating and returning
    8·2 answers
  • Infer why gases such as the oxygen used at hospitals are compressed. why must compressed gases be shielded from high temperature
    7·1 answer
  • Match the term with the definition.
    7·1 answer
  • Explain how to identify a starting position<br> on a line.
    6·1 answer
  • A parallel plate capacitor has two plates has a separation d. If I charge it with a +Q and a ????Q on the two plates, respective
    8·1 answer
  • Pls help asap
    13·2 answers
  • If a car has a mass of 1,000 kilograms, and a velocity of 35 m/s. What is its momentum?
    7·1 answer
  • Energy in inductors: you need an inductor that will store 20 j of energy when a 3. 0-a current flows through it. what should be
    13·1 answer
  • A large tank is filled with water to a depth of 38 m. An opening is located 14 m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!