Answer:
average speed is 0.159 m/s
average velocity = 0.0011 m/s
Explanation:
given data
time = 41.6 s
total distance = 6.65 m
length = 0.0463 m
to find out
average speed and the magnitude average velocity
solution
we know average speed formula is
average speed =
...............1
put here value
average speed = 
average speed is 0.159 m/s
and
average velocity formula is
average velocity =
...............2
here displacement is initial point to final point and here is 0.0463 m
put here value
average velocity = 
average velocity = 0.0011 m/s
The velocity of the electron after moving a distance of 1cm in the electric field is 5.95×10⁶m.
<h3>What is Electric field?</h3>
Electric field is the physical field that surrounds a charge.
<h3>How to find final velocity of the electron when it moves some distance in a certain electric field?</h3>
- From Newton's second law, the acceleration the electron will be
a=F/m=qE/m
- where q= charge of electron
E= electric field
m= mass of electron
=(−1.60×10^−19C)(3×10³N/C)/(9.11×10^-31kg)
=10¹⁵×0.526m/s²
- The kinematics equation v²=v0²+2a(Δx)
- where v=final velocity of the electron
v0=initial velocity of the electron =5×10⁶m/s
a=acceleration of the electron =10¹⁵×0.526m/s²
Δx=distance moved by the electron in east direction =1cm=10^-2m
- Now v^2=(5×10⁶)²+2×10¹⁵×0.526×10^-2
=25×10¹²+10.52×10¹²
=35.52×10¹²
- Now velocity of electron=5.95×10⁶m/s.
Thus , we can conclude that the velocity of the electron after moving a distance of 1cm in the electric field is 5.95×10⁶m.
Learn more about electric field here:
brainly.com/question/26199225
#SPJ1
We know, work done = Weight * Displacement
w = 3.76 * 2
w = 7.52 J
In short, Your Answer would be: 7.52 Joules
Hope this helps!
Answer:
A) Emin = eV
B) Vo = (E_light - Φ) ÷ e
Explanation:
A)
Energy of electron is the product of electron charge and the applied potential difference.
The energy of an electron in this electric field with potential difference V will be eV. Since this is the least energy that the electron must reach to break out, then the minimum energy required by this electron will be;
Emin = eV
B)
The maximum stopping potential energy is eVo,
The energy of the electron due to the light is E_light.
If the minimum energy electron must posses is Φ, then the minimum energy electron must have to reach the detectors will be equal to the energy of the light minus the maximum stopping potential energy
Φ = E_light - eVo
Therefore,
eVo = E_light - Φ
Vo = (E_light - Φ) ÷ e
Oxygen and carbon dioxide