Answer:

Explanation:
Given:
- wavelength of light in the air,

- time taken to travel from the source to the photocell via air,

- time taken to reach the photocell via air and glass slab,

- thickness of the glass slab,

<u>Now we have the relation for time:</u>

hence,

c= speed of light in air



For the case when glass slab is inserted between the path of light:
(since light travel with the speed c only in the air)
here:
v = speed of light in the glass


Using Snell's law:



I believe the term Frequency is what you are looking for.
With each<span> passing </span>day<span>, the </span>high tides occur<span> about an </span>hour later<span>. The moon rises about an </span>hour later each day<span>, too (actually, 54 minutes </span>later<span>). Since the moon pulls up the </span>tides<span>, these two delays are connected. As the earth rotates through </span>one day<span>, the moon moves in its orbit.</span>
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:



Stark contrast to paths on energy surfaces or even mechanistic reactions, rule-based and inductive computational approaches to reaction prediction mostly consider only overall transformations. Overall transformations are general molecular graph rearrangements reflecting only the net change of several successive mechanistic reactions. For example, Figure 1 shows the overall transformation of an alkene interacting with hydrobromic acid to yield the alkyl bromide along with the two elementary reactions which compose the transformation.