Answer:
Where Igneous Rocks Are Found. The deep seafloor (aka... the oceanic mantle) is made almost entirely of basaltic rocks, with peridotite underneath in the mantle.
Explanation: im pretty sure thats right at least
Answer:
(C) Acetylene (ethyne) can be converted to the acetylide anion by treating with a strong base such as CH₃Li.
Explanation:
Acetylene (C₂H₂) can be converted to the acetylide anion (C₂⁻²) when treated with a base because it will donate protons (2H⁺). So it will be a neutralization reaction. NaNH₂ and NaOH are strong bases because they are good electrons donators ( NaNH₂ has pair of electrons on N, and NaOH has the group OH⁻), but CH₃Li has no pair of electrons to donate, so it's not a strong base.
You did not include the statements but since magnesium chloride is ionic substance that we know that magnesium and chlorine formed an ionic bond. Therefore your statement most likely will talk about how one magnesium atom gave up 2 electrons while two chlorine atoms took 1 electron. The reaction looks like Mg+2Cl⇒MgCl₂.
I hope this helps. Let me know in the comments if anything is unclear.
The molar mass of citric acid (c6h8o7) is 192.124g/mol
The molar mass of baking soda (nahco3) is 84.007g/mol
The molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance in that sample and is measured in moles. Molar mass is a mass property, not a molecular property of a substance.
Molar mass is the mass of 1 mole of the sample. To find the molar mass, add up the atomic masses (atomic weights) of all the atoms in the molecule. Use the masses listed in the periodic table or atomic weight table to determine the atomic mass of each element.
Learn more about molar mass here:brainly.com/question/15476873
#SPJ1
Answer:
136.63 °C
Explanation:
ΔTb=Tb solution - Tb pure
Where; Tb pure = 133.60°C
molar mass of solute = 121.14 g/mol
number of moles of solute; 52.2g/121.14 g/mol = 0.431 moles
molality = 0.431 moles/350 * 10^-3 = 1.23 molal
Then;
ΔTb = Kb * m * i
Kb = 2.46°C kg mol^-1
m = 1.23 molal
i = 1
ΔTb = 2.46 * 1.23 * 1
ΔTb = 3.03 °C
Hence;
Tb solution = ΔTb + Tb pure
Tb solution = 3.03 °C + 133.60°C
Tb solution = 136.63 °C