The force between the two point charge when they are separated by 18 cm is 3 N
<h3>How do I determine the force when they are 18 cm apart?</h3>
Coulomb's law states as follow:
F = Kq₁q₂ / r²
Cross multiply
Fr² = Kq₁q₂
Kq₁q₂ => constant
F₁r₁² = F₂r₂²
Where
- F₁ and F₂ are the initial and new force
- r₁ and r₂ are the initial and new distance apart
With the above formula, we can obtain the force between the two point charge when they are 18 cm apart. Details below:
- Initial distance apart (r₁) = 6 cm
- Initial force of attraction (F₁) = 27 N
- New distance apart (r₂) = 18 cm
- New force of attraction (F₂) =?
F₁r₁² = F₂r₂²
27 × 6² = F₂ × 18²
972 = F₂ × 324
Divide both side by 324
F₂ = 927 / 324
F₂ = 3 N
Thus, the force when they are 18 cm apart is 3 N
Learn more about force:
brainly.com/question/28569085
#SPJ1
Answer:
Step down transformers are used in power adaptors and rectifiers to efficiently decrease the voltage. They are also used in electronic SMPS.
Explanation:
pls mark me as brainlist
Thanks a lot
Answer:c. labor-intensive.
Explanation:labor intensive is a process where a larger portion of total costs is due to labor as compared with the portion for costs incurred in purchase, maintenance, and depreciation of capital equipment. Example are Agriculture, construction, and coal-mining.
Industries that produce goods or services requiring a large amount of labor. Traditionally, labor intensive industries were determined by the amount of capital needed to produce the goods and services.
Answer:
B = 1058.4 N
Explanation:
Given that,
The volume of a metal block, V = 0.09 m³
The density of fluid, d = 1200 kg/m³
We need to find the buoyant force when it's Completely immersed in brine. The formula for the buoyant force is given by :

g is acceleration due to gravity

So, the required buoyant force is 1058.4 N.