1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
3 years ago
6

Underlining words and highlighting dates are part of a student's personal note taking key.

Engineering
2 answers:
stiv31 [10]3 years ago
5 0

Answer:

t

Explanation:

allochka39001 [22]3 years ago
3 0
More information is needed
You might be interested in
What are the horizontal structures beneath a slab that help transfer the load from the slab to the columns?
Delicious77 [7]

Answer: D) Beams

Explanation:

3 0
2 years ago
Read 2 more answers
What is stress corrosion cracking?
aksik [14]

Answer:

The growth of crack formation in a corrosive environment.

Explanation:

6 0
3 years ago
You are given a noninverting 741 op-amp with a dc-gain of 23.6 dB. The input signal to this amplifier is;Vin(t) = (0.18)∙cos(2π(
Vsevolod [243]

Answer:

Output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Explanation:

Given:

dc gain A = 23.6 dB

Input signal V_{in} (t) = 0.18 \cos (2\pi (57000)t +18.3)

Now convert gain,

A = 10^{\frac{23.6}{20} } = 15.13

DC gain at frequency f = 0 is given by,

  A = \frac{V_{out} }{V_{in} }

V_{out} =AV_{in}

V_{out} = 15.13 \times   0.18 \cos (2\pi (57000)t +18.3)

At zero frequency above equation is written as,

V_{out} = 2.72 \times \cos 18.3

V_{out} = 2.72

Now we write output voltage as input voltage,

V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Therefore, output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

7 0
3 years ago
If noise levels are high enough that you have to raise
Nana76 [90]
It would be ten because your ten feet away
4 0
3 years ago
Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320
lesya [120]

Answer:

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

Explanation:

The complete statement of this question is "Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of P = 450 kN"

Each bolt is subjected to shear forces. In this case, safety factor is the ratio of the ultimate shear strength to maximum allowable shear stress. That is to say:

n = \frac{S_{uts}}{\tau_{max}}

Where:

n - Safety factor, dimensionless.

S_{uts} - Ultimate shear strength, measured in pascals.

\tau_{max} - Maximum allowable shear stress, measured in pascals.

The maximum allowable shear stress is consequently cleared and computed: (n = 4.2, S_{uts} = 320\times 10^{6}\,Pa)

\tau_{max} = \frac{S_{uts}}{n}

\tau_{max} = \frac{320\times 10^{6}\,Pa}{4.2}

\tau_{max} = 76.190\times 10^{6}\,Pa

Since each bolt has a circular cross section area and assuming the shear stress is not distributed uniformly, shear stress is calculated by:

\tau_{max} = \frac{4}{3} \cdot \frac{V}{A}

Where:

\tau_{max} - Maximum allowable shear stress, measured in pascals.

V - Shear force, measured in kilonewtons.

A - Cross section area, measured in square meters.

As connection consist on five bolts, shear force is equal to a fifth of the applied load. That is:

V = \frac{P}{5}

V = \frac{450\,kN}{5}

V = 90\,kN

The minimum allowable cross section area is cleared in the shearing stress equation:

A = \frac{4}{3}\cdot \frac{V}{\tau_{max}}

If V = 90\,kN and \tau_{max} = 76.190\times 10^{3}\,kPa, the minimum allowable cross section area is:

A = \frac{4}{3} \cdot \frac{90\,kN}{76.190\times 10^{3}\,kPa}

A = 1.640\times 10^{-3}\,m^{2}

The minimum allowable cross section area can be determined in terms of minimum allowable bolt diameter by means of this expression:

A = \frac{\pi}{4}\cdot D^{2}

The diameter is now cleared and computed:

D = \sqrt{\frac{4}{\pi}\cdot A}

D =\sqrt{\frac{4}{\pi}\cdot (1.640\times 10^{-3}\,m^{2})

D = 0.0457\,m

D = 45.7\,mm

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

5 0
3 years ago
Other questions:
  • A thermal energy storage unit consists of a large rectangular channel, which is well insulated on its outer surface and encloses
    7·1 answer
  • Members of the student council have been asked by their
    5·1 answer
  • A man weighs 145 lb on earth.Part ASpecify his mass in slugs.Express your answer to three significant figures and include the ap
    11·1 answer
  • A cylindrical specimen of this alloy 12.7 mm in diameter and 250 mm long is stressed in tension and found to elongate 7.6 mm. On
    5·1 answer
  • Plot the following trig functions using subplots, choosing an appropriate layout for the number of functions displayed. The subp
    8·1 answer
  • A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as
    12·1 answer
  • Calculate the potential energy in kJ of a human body (70 kg) possesses on top of the Empire State Building (1,250 ft tall).
    7·1 answer
  • The van der Waals equation is a modification of the ideal gas equation. What two factors does this equation account for? A. (1)
    6·1 answer
  • Why doesn't any one give as many points as i do for random questions on brainly
    14·2 answers
  • Explain the S.A. co-ordinate system used in surveying
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!