Answer:
a) 3.607 m
b) 1.5963 m
Explanation:
See that attached pictures for explanation.
Answer:The Urban heat island temperature will be REDUCED.
Two Impacts of Rooftop gardens
1) provision of shade against Sunlight.
2) It helps to purify the air around the building.
Explanation: Rooftop gardens are gardens made on top of the roofs of buildings, it is a Green initiative aimed at helping to improve the overall Environment.
Rooftop gardens have several significant benefits which includes
Reduction of the surrounding temperatures and the Urban heat Island temperatures.
Rooftop gardens helps to shade the roof from the direct impacts of harsh weather conditions.
Generally, plants are known as air purifiers as they remove the excess Carbondioxide around the environment through photosynthesis, and they also help to release water vapor which will help to improve the humidity of the environment.
Answer:
the police officer cruise each streets precisely once and he enters and exit with the same gate.
Explanation:
NB: kindly check below for the attached picture.
The term ''Euler circuit'' can simply be defined as the graph that shows the edge of K once in a finite way by starting and putting a stop to it at the same vertex.
The term "Hamiltonian Circuit" is also known as the Hamiltonian cycle which is all about a one time visit to the vertex.
Here in this question, the door is the vertex and the road is the edge.
The information needed to detemine a Euler circuit and a Hamilton circuit is;
"the police officer cruise each streets precisely once and he enters and exit with the same gate."
Check attachment for each type of circuit and the differences.
Answer:
a)R= sqrt( wt³/12wt)
b)R=sqrt(tw³/12wt)
c)R= sqrt ( wt³/12xcos45xwt)
Explanation:
Thickness = t
Width = w
Length od diagonal =sqrt (t² +w²)
Area of raectangle = A= tW
Radius of gyration= r= sqrt( I/A)
a)
Moment of inertia in the direction of thickness I = w t³/12
R= sqrt( wt³/12wt)
b)
Moment of inertia in the direction of width I = t w³/12
R=sqrt(tw³/12wt)
c)
Moment of inertia in the direction of diagonal I= (w t³/12)cos 45=( wt³/12)x 1/sqrt (2)
R= sqrt ( wt³/12xcos45xwt)