Answer:
Explanation:
Aluminium is used in rechargeable battery.
Aluminium ions provide the energy by flowing from anode to the cathode.
When the battery is recharged these ions comes to the anode.
The one ion gives three electrons. Which means one Al⁺³ is equal to the three Li⁺ ions. So, three unit of charge giving by ions increase the energy storage capacity.
The rechargeable batteries with aluminium gives low cost and low flammability.
It is safe to use because of inertness of aluminium and also easy to use in ambient environment.
Aluminium also have high volume capacity than lithium which means energy storage per volume is greater.
Its charge discharge cycles are also greater.
The aluminum ion batteries are also smaller in size.
The compression factor based on the information given is 0.083.
<h3>How to calculate the compression factor?</h3>
The way to calculate the compression factor goes this:
V(ideal) = RT/P
= (0.0821 × 250)/15
= 1.368
V(real) will be:
= V(ideal)/12
= 1.368/12 = 0.114
The compression factor will be:
= 1.368/(12 × 1.368)
= 0.083
Therefore, the compression factor is 0.083.
Learn more about compression factor on:
brainly.com/question/24261456
#SPJ12
Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
Answer:
b. One electron state is an anti-bonding orbital, which results in an absence of electron density between atoms.
Explanation: