C. 96.82 kPa because to find the amount of pressure the air is causing you need to subtract the amount of pressure the water vapor is causing because the only two gasses making up the air in the pool area are air and water vapor.
Answer:
22.9 Liters CO(g) needed
Explanation:
2CO(g) + O₂(g) => 2CO₂(g)
? Liters 32.65g
= 32.65g/32g/mol
= 1.02 moles O₂
Rxn ratio for CO to O₂ = 2 mole CO(g) to 1 mole O₂(g)
∴moles CO(g) needed = 2 x 1.02 moles CO(g) = 2.04 moles CO(g)
Conditions of standard equation* is STP (0°C & 1atm) => 1 mole any gas occupies 22.4 Liters.
∴Volume of CO(g) = 1.02mole x 22.4Liters/mole = 22.9 Liters CO(g) needed
___________________
*Standard Equation => molecular rxn balanced to smallest whole number ratio coefficients is assumed to be at STP conditions (0°C & 1atm).
Answer:
a)
,
, b)
, 
Explanation:
a) The ideal gas is experimenting an isocoric process and the following relationship is used:

Final temperature is cleared from this expression:


The number of moles of the ideal gas is:



The final temperature is:


The final pressure is:



b) The ideal gas is experimenting an isobaric process and the following relationship is used:

Final temperature is cleared from this expression:




The final volume is:



An aldehyde is an organic compound containing a terminal carbonyl group (C = O). This functional group, consisting of a carbon atom bound to a hydrogen atom and an oxygen atom via double bond (the general formula: CHO) is called the aldehyde group. In a reaction of the addition of alcohol to the carbonyl group, it forms hemiacetals.
On the picture attached it is shown the reaction of alcohol addition to the carbonyl group with the major organic product <span>formed in the reaction.</span>