<h2>

→

</h2>
Explanation:
Ethanol can be oxidized to ethanal or acetaldehyde which is further oxidized to acid that is acetic acid.
→
[oxidation by loss of hydrogen]
-
An oxidizing agent potassium dichromate(VI) solution is used to remove the hydrogen from the ethanol.
- An oxidizing agent used along with dilute sulphuric acid for acidification.
Acetaldehyde can also be reduced back to ethanol again by adding hydrogen to it by using a reducing agent that is sodium tetrahydro borate, NaBH4.
- The oxidation of aldehydes to carboxylic acids can be done by the two-step process.
- In the first step, one molecule of water is added in the presence of a catalyst that is acidic.
- There is a generation of a hydrate. (geminal 1,1-diol).
→
[reduction by the gain of electrons]
Here, the oxidizing agent used is
in the presence of acetone.
Answer:
C. 100.7 amu
Explanation:
Isotopes of an element are atoms of an element with the same atomic number but different atomic masses. Each atomic mass of an isotope is known as an isotopic mass. An element that exhibits isotope, that is, that have two or more isotopes has a relative atomic mass that is not a whole number.
Relative atomic mass of X is the sum of the products of the relative abundances of each isotope and its isotopic mass.
For Isotope ¹⁰⁰X: 30% × 100 = 30 amu
For Isotope ¹⁰¹X: 70% × 101 = 70.7 amu
Relative atomic mass of X = (30 + 70.7) amu = 100.7 amu
Therefore, the approximate atomic mass of X is 100.7 amu
I think that the answer is a size and speed
Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.
I think it is e sorry if I’m wrong