We know that
pH = -log[H+]
the pH value falls in between 0- 7 for acids
As the pH value increases the concentration of [H+] increases.
similarly as the value of pH approaches 0, the concentration of H+ increases
The solution said to become more acidic
Also
[H+] X [OH-] = 10^-14
Thus pH + pOH = 14
hence the concentration of OH- decreases as the pH approaches zero
Fruits and vegetables are in the produce aisle because they are plants, and plants are producers.
Producers are organisms that create energy on their own through various processes depending on the organism.
Answer:
132g/mole
Explanation:
using the formula PV=nRT should be used to solve for the number of moles (n). R is a constant which is 62.3637 L mmHG/mole K.
Inorder for your units to match you will have to convert 125ml to .125L and the temperature of 85C to K . you do that by adding 273 to the 85C and get 358K. Once you solve for n then you use that number and divide by the number of grams from the question (.560g) since molar mass is grams/moles.
Energy were released from the walnut, q = 1,673.6 J
<h3>Equation :</h3>
To find the energy using formula,
q = mcΔt
where,
q is charge
m is mass
c is specific heat of water
Δt is change in temperature
So, given
t₁ = 50°C
t₂ = 60°C
m = 40g
c = 4.184 J/g
Now putting the values known,
We get,
q = mc(t₂ - t₁)
q = 40g x 4.184 J/g x (60 - 50)
q = 167.36 J x 10
q = 1,673.6 J
<h3>What is heat energy?</h3>
Heat is the thermal energy that is transferred when two systems with different surface temperatures come into contact. Heat is denoted by the letters q or Q and is measured in Joules.
To know more about specific heat :
brainly.com/question/11297584
#SPJ9
Isotopes of same element has different number of neutrons with different masses and having same number of protons and electrons.
Radioactive isotopes are those isotopes which are radioactive in nature. The unstable nucleus results in the radioactivity process and this process will go on until the stable isotope (element) forms.
Thus, the nucleus of unstable isotopes of an element will decay leading to emission of radiation.