Answer:
The answer to your question is 0.62 atm = 62.82 kPa = 471.2 mmHg
Explanation:
Data
P = 0.62 atm
P = ? kPa
P = ? mmHg
Process
1.- Look for the conversion factor of atm to kPa and mmHg
1 atm = 101.325 kPa
1 atm = 760 mmHg
2.- Do the conversions
1 atm ----------------- 101.325 kPa
0.62 atm ------------ x
x = (0,62 x 101.325) / 1
x = 62.82 kPa
1 atm ------------------ 760 mmHg
0.62 atm ------------ x
x = (0.62 x 760)/1
x = 471.2 mmHg
It becomes a liquid with the water
Answer : The final volume of gas will be, 26.3 mL
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.974 atm
= final pressure of gas = 0.993 atm
= initial volume of gas = 27.5 mL
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the final volume of gas will be, 26.3 mL
Answer:
See explanation below
Explanation:
First, we need to understand that the monochlorination of an alkane like this one, involves substitution of one of the atoms of hydrogen of the molecule for an atom of chlorine.
This reaction takes place when the alkane reacts with Cl₂ in presence of light or heat.
When this happens, the first step involves the breaking of the double bond of the chlorine to form the ion Cl⁻.
The next step involves the substraction of the hydrogen of the molecule by the Chlorine. This will leave the alkane with a lone pair available for reaction.
The third step, the alkane with the lone pair of electron substract a chlorine for the beggining and form the mono chlorinated product.
The final step involves forming the remaining products with the remaining reagents there.
In the picture attached you have the mechanism and product for this reaction:
Lithium 6 would have 6 valence electrons in the outer orbital, while lithium 7 would have 7 in the outer orbital.