<h3>1. <u>Answer;</u></h3>
a. the strong nuclear force is much greater than the electric force.
<h3><u>Explanation</u>;</h3>
- <em><u>For an atom to be stable it means it has enough amount of binding energy to hold its nucleus together permanently. </u></em>
- Therefore, <em><u>an unstable atom lacks enough amount of binding energy to hold its nucleus permanently and thus undergoes decay to achieve stability. Unstable atoms are therefore referred to being radioactive.</u></em>
-
Small atoms are stable; <u>this is because they have equal number of protons and neutrons and thus the protons and neutrons fill up energy levels while maximizing the strong force binding the nucleus together. </u>
<h3>9.<u> Answer;</u></h3>
b. change into a different element altogether.
Uranium-238 undergoes alpha decay. Therefore, uranium-238 will <em><u>change into a different element altogether</u></em>.
<h3><u>
Explanation;</u></h3>
- Unstable atoms undergo radioactive decay in order to achieve stability of their nucleus.
- <em><u>Uranium-238 is an example of such atom, which may undergo decay to achieve stability.</u></em>
- <em><u>Alpha decay is one of the types of decays,</u></em> others being beta decay and gamma decay. <em><u>In alpha decay the radioactive isotope undergoes decay such that its mass number is decreased by four and its atomic number is decreased by two.</u></em>
-
Therefore, <em><u>Uranium-238 undergoes alpha decay to form a different element whose mass number is 234 and atomic number is 90, known as thorium-234. </u></em>
Answer:
The answer is 3
C2H5OH + O2 CO2 +H2O (unbalanced)
C2H5OH +3O2(g). 2CO2(g)+3H2O(balanced)
Full Question:
Ammonia chemically reacts with oxygen gas to produce nitric oxide and water. What mass of water is produced by the reaction of 7.7g of ammonia?
Be sure your answer has the correct number of significant digits.
Answer:
12.23g ≈ 12g (2 s.f)
Explanation:
Ammonia chemically reacts with oxygen gas to produce nitric oxide and water. The balanced chemical reaction is given as:
4 NH3 + 5 O2 -------> 4 NO + 6 H2O
From the reaction;
4 mole of ammonia reacts to produce 6 moles of water
From the question;
Moles = mass / molar mass
From the question;
moles of ammonia = mass / molar mass = 7.7 / 17 = 0.4529moles
Number of moles of water produced;
4 = 6
0.4529 = x
x = (0.4529 * 6 ) / 4
x = 0.67935moles
Mass of water = moles * molar mass = 0.67935 * 18 = 12.23g ≈ 12g (2 s.f)
Answer:
0.22 mol HClO, 0.11mol HBr.
0.25mol NH₄Cl, 0.12 mol HCl
Explanation:
A buffer is defined as a mixture in solution between weak acid and its conjugate base or vice versa.
Potassium hypochlorite (KClO) could be seen as conjugate base of HClO (Weak acid). That means the addition of <em>0.22 mol HClO </em>will convert the solution in a buffer. HBr reacts with KClO producing HClO, thus, <em>0.11mol HBr</em> will, also, convert the solution in a buffer. 0.23 mol HBr will react completely with KClO and in the solution you will have only HClO, no a buffering system.
Ammonia (NH₃) is a weak base and its conjugate base is NH₄⁺. That means the addition of <em>0.25mol NH₄Cl</em> will convert the solution in a buffer. Also, NH₃ reacts with HCl producing NH₄⁺. Thus, addition of<em> 0.12 mol HCl</em> will produce NH₄⁺. 0.25mol HCl consume all NH₃.
A). 4
.........................