Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

Answer: C. 12.6
Explanation: 2*pi*1.8= 11.304
11.304/0.9= 12.56
Answer:
like I see it as how well you're connected with yourself
The answer is Entropy or part C.
Entropy is basically a thermodynamic quantity that tells the randomness of a system or as said in the question tells us a measure of the disorder of the system.
The second law of thermodynamics states that a closed system has entropy which may remain constant or otherwise might increase.
It is basically the measure of the change of a system or universe when it goes from order to disorder.
2.3 seconds
Ignoring air resistance, the flight time is merely a function of gravity and vertical velocity. The vertical velocity will be the initial velocity multiplied by the sine of the angle above the horizon. So:
V = sin(72)*12 m/s
V = 0.951056516 * 12 m/s
V = 11.4126782 m/s
Gravitational acceleration is 9.8 m/s, so divide the vertical velocity by gravitational acceleration to get how long it takes for the ball to reach its apex.
11.4126782 m/s / 9.8 m/s^2 = 1.164559 s
And the old saying "What goes up, must come down" really applies here. And conveniently, it's also symmetric, in that the time it takes to fall will match the time it takes to reach its apex. So multiply the time by 2.
1.164559 s * 2 = 2.329117999 s
Rounding the result to 2 significant figures gives 2.3 seconds.