First, we need to compute the mass of oxygen found in 100 grams of saltpeter:
mass of oxygen = 100 - (mass of potassium + mass of nitrogen)
= 100 - (38.67 + 13.86)
= 100 - 52.53
mass of oxygen in 100 grams saltpeter = 47.47 grams
Now, we can use cross multiplication to find the mass of oxygen in 328 grams saltpeter as follows:
mass of oxygen = (328 x 47.47) / 100 = 155.7016 grams
Answer:
If the question is which can make a buffer, then NH3, NH4Cl should be correct. Because Ammonium (NH4) is conjugate acid of NH3 so they can form an equilibrium which is basically a buffer whose purpose is to resist pH change.
Explanation:
The correct option is this: THE ORGANISM IS A PROKARYOTES.
There are basically two types of cells, prokaryotic and eukaryotic cells. The prokaryotic cells are primitive cells which contain only a few materials which are not well organised. This type of cells is usually found in microscopic organisms. The cells lack organised nucleus and cell organelles which have membranes.<span />
This combination in non polar.
Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.