Answer:
velocity = 0.3m/s
speed = 1.21 m/s
Explanation:
The total time it takes to get from the front door to the bench is
t = 27 + 39 = 66 seconds
The net displacement from the front door to the bench is the distance from the front door to the windmill subtracted by the distance from the windmill to the bench
s = 50 - 30 = 20 m
So the average velocity is net displacement divided by total time
v = s / t = 20 / 66 = 0.3 m/s
The total distance from the front door to the bench is the sum of distance from the front door to the windmill and the distance from the windmill to the bench
S = 50 + 30 = 80 m
So the average speed is total distance divided by total time
v = s / t = 80 / 66 = 1.21 m/s
Answer:
The final size is approximately equal to the initial size due to a very small relative increase of
in its size
Solution:
As per the question:
The energy of the proton beam, E = 250 GeV =
Distance covered by photon, d = 1 km = 1000 m
Mass of proton, 
The initial size of the wave packet, 
Now,
This is relativistic in nature
The rest mass energy associated with the proton is given by:


This energy of proton is 
Thus the speed of the proton, v
Now, the time taken to cover 1 km = 1000 m of the distance:
T = 
T = 
Now, in accordance to the dispersion factor;


Thus the increase in wave packet's width is relatively quite small.
Hence, we can say that:

where
= final width
We might kill too many animals and mess up the food chain because some bigger fish won't be able to eat smaller fish and some smaller fish might not have any organisms to eat.