Answer:
Explanation:
The point at which magnetic field is to be found lies outside wire so while applying Ampere's law we shall take the whole of current . If B be magnetic field which is circular around conductor.
Applying Ampere's law :-
∫ B dl = μ₀ I ; I is current passing through ampere's loop
B x 2π x 2.00 = 4 x π x 10⁻⁷ x 2
B = 2 x 10⁻⁷ T.
Answer:
<u>The correct answer is 0.556 Watts</u>
Explanation:
The computer monitor uses 200 Watts of power in an hour, that is the standard measure.
If we want to know, how much energy the computer monitor uses in one second, we will have to divide both sides of the equation into 3,600.
1 hour = 60 minutes = 3,600 seconds (60 x 60)
Energy per second = 200/3600
Energy per second = 0.0556 Watts
Therefore to calculate how much energy is used in 10 seconds, we do this:
Energy per second x 10
<u>0.0556 x 10 = 0.556 Watts</u>
<u>The computer monitor uses 0.556 Watts in 10 seconds</u>
Answer:
0.45 seconds
Explanation:
Letting the value of g = 10 m/s/s
final velocity (v) = 0 m/s (since the egg will come to rest at the maximum height)
initial velocity(u) = 4.5 m/s
acceleration = -10 m/s/s (since the gravity is acting against the egg)
time = t seconds
From the first equation of motion:
<em>v = u + at</em>
<em>0 = 4.5 + (-10)t</em>
<em>t = -4.5 / -10</em>
t = 0.45 seconds
Thank you for posting your question here at brainly. Below is Yoland's study:
<span>Yolanda is studying two waves. The first wave has an amplitude of 2 m, and the second has an amplitude of 3 m.
</span>
I think the answer is "She can use constructive interference to generate a wave with an amplitude of 1.5 m."