Answer:
b. Add a few drops of one of the layers to a test tube containing 1 mL of water. Shake the test tube to determine the solubility of the layer in water
Explanation:
Option a is not true, it depends on the compound being extracted.
Option c is not true, although most of the solvents used in extractions have lower boiling point than water there are exceptions, for example toluene.
Option d is not true. Again most of the solvents used in extractions are less dense than water, there are many exceptions, for example chloroform, so for equal volumes the chloroform layer will weigh more.
Option b. is the correct one.
One will test the miscibility of the layer in water. If it inmiscible then one would know is the organic layer. If it is the aqueous layer then it will completely be miscible.
Answer:
Water moving across the earth in streams and rivers pushes along soil and breaks down pieces of rock in a process called erosion. The moving water carries away rock and soil from some areas and deposits them in other areas, creating new landforms or changing the course of a stream or river.
Answer:
[C] = 0.4248M
Explanation:
A + B ⇄ 2C
C(i) 1.68M 1.68M 0.00
ΔC -x -x +2x
C(eq) 1.68-x 1.68-x 2x
Keq = [C]²/[A][B] = (2x)²/(1.68 - x)²= 8.98 x 10⁻²
Take SqrRt of both sides => √(2x)²/(1.68 - x)² = √8.98 x 10⁻²
=> 2x/1.68 - x = 0.2895
=> 2x = 0.2895(1.68 - x)
=> 2x = 0.4863 - 0.2895x
=> 2x + 0.2895x = 0.4863
=> 2.2895x = 0.4863
=> x = 0.4863/2.2895 = 0.2124
[C] = 2x = 2(0.2124)M = 0.4248M in 'C'
A drug that would slow down, reduce or dull body function would be a depressant.