Momentum before the hit:
p = mv = 0.01 * 300 + 1 * 0
Momentum after the hit:
p = 0.01 * 150 + 1 * v
Momentum is conserved:
0.01 * 300 = 0.01 * 150 + v
3 = 1.5 + v
v = 1.5
The velocity of the block after the collision is 1.5 m/s.
That would be gravitational force. Check out creation.com. Search up "star-formation" in their search bar. Hope this helped.
This is a trick question:
The Doppler effect states that as you move closer to the source, the frequency of light(or sound/waves in general) increases, but technically the speed of light is always the same speed, even if you are moving at the speed of light.
Thus, the answer would be something along the lines of <u>don't change</u>.
Answer:
(a): The normal force on the car from the track when the car's speed is v= 7.6 m/s is FN= -6696 N.
(b): The normal force on the car from the track when the car's speed is v= 17 m/s is FN= 8912.7 N.
Explanation:
m= 1080 kg
r= 16m
v1= 7.6 m/s
v2= 17 m/s
g= 9.81 m/s²
v1= w1*r
w1= v1/r
w1= 0.475 rad/s
ac1= w1² * r
ac1= 3.61 m/s²
FN= m * (ac1 - g)
FN= -6696 N (a)
-----------------------------------------------------
v2= w2*r
w2= v2/r
w2= 1.06 rad/s
ac2= w2² * r
ac2= 18.06 m/s²
FN= m * (ac2 - g)
FN= 8912.7 N (b)
Answer:
A) v = 40 m / s, B) v_average = 20 m / s
Explanation:
For this exercise we will use the kinematics relations
A) the final velocity for t = 5 s and since the body starts from rest its initial velocity is zero
v = vo + a t
v = 0 + 8 5
v = 40 m / s
B) the average velocity can be found with the relation
v_average = vf + vo / 2
v-average = 0+ 40/2
v_average = 20 m / s