The correct answer is:
<span>A. orbiting closer to the earths surface.
In fact, the gravitational force exerted by the Earth on the satellite is
</span>

<span>where
G is the gravitational constant
M is the Earth mass
m is the satellite mass
r is the distance of the satellite from the Earth's surface
We can see that, if the satellite orbits closer to the Earth's surface, its distance r from the centre of the planet decreases. But when r decreases, F (the gravitational force) increases, so A is the correct answer.</span>
Answer:
The correct answer is d
Explanation:
In this exercise they ask us which statement is correct, for this we plan the solution of the problem, this is a Doppler effect problem, it is the frequency change due to the relative speed between the emitter and the receiver of sound.
The expression for the Doppler effect of a moving source is
f ’= (v / (v- + v_s) f
From this expression we see that if the speed the sound source is different from zero feels a change in the frequency.
The correct answer is d
Answer:
a = 3.27 m/s²
T = 275 N
Explanation:
Given that:
Mass m₁ = 42.p0 kg
Mass m₂ = 21.0 kg
Consider both masses to be in a whole system, then:
The acceleration can be determined as:

Making acceleration the subject in the above formula;




a = 3.27 m/s²
in the string, the tension is calculated using the formula:



T = 274.68 N
T ≅ 275 N
1.) Have your keys in hand before approaching or entering your car.
2. Be alert to other pedestrians and drivers.
3.) Search for signs of movement between, beneath and around objects to both sides of your vehicle
4.) check the spare tire for proper inflation