No it won't. It'll vary inversely as the square of the separation.
Answer:
40 Hz
Explanation:
f = 1/T = 1 / 0.025 = 40 Hz
solution:
1.6 m/s = 96 m/min (in other words, 1.6 m/s x 60 s/min)
96 m/min x 8.3 min = 796.8 m

Answer:
The equilibrium position will shift towards the left hand side or reactants side
Explanation:
Decreasing the volume (increasing the pressure) of the system will shift the equilibrium position towards the lefthand side or reactants side. This is because, decreasing the volume (increasing the pressure) implies shifting the equilibrium position towards the side having the least number of moles.
There are two moles of reactants and a total of three moles of products(total). Hence decreasing the volume and increasing the pressure of the gas phase reaction will shift the equilibrium position towards the lefthand side.
They will rise to the 2nd layer of the atmosphere where the temperature decreases by a lot and then they will blow up