Answer:
313.92w
Explanation:
Formula for power:
P=W/∆t = Fv
Givens:
m=20kg
∆y=4.0m
∆t=2.5s
a=9.81m/s²
In order to find power, we first need to solve for work.
W=Fd (force*displacement), f=mg
W=mg∆y
W=(20kg)(9.81m/s²)(4.0m)
W=784.8J
P=W/∆t
P=784.8J/2.5s
P=313.92 watts
Answer:
Wind is the primary renewable resource used for electric power generation in the state. In 2019, wind provided 97% of the state's renewable energy generation, and Illinois was sixth in the nation in utility-scale (1 megawatt or greater) wind capacity, with about 5,200 megawatts online.
Explanation:
Explanation:
A metal such as copper is a <u>conductor</u> because it provides a pathway for electric charges to move easily. A material such as rubber is an <u>insulator</u> because it <u>resists</u> the flow of electric charges. A material that partially conducts electric current is a <u>semiconductor</u>. These materials include <u>group 3 and group 5</u> elements.
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.
This can be seen as a trick question because heat engines can typically never be 100 percent efficient. This is due to the presence of inefficiencies such as friction and heat loss to the environment. Even the best heat engines can only go up to around 50% efficiency.