Selective breeding. That is, breeding which uses extreme selectivity
The period of any wave is the time it takes for its angle
to go from zero to 2pi .
The 'sin' function is a wave. The angle of this one is (8pi t).
When t=0, the angle is zero.
Wonderful.
Now, how long does it take for the angle to grow to 2pi ?
I*n other words, when is (8pi t) = 2pi ?
Divide each side by '2pi': . . . . . 4 t = 1
Divide each side by ' 4 ': . . . . . t = 1/4
And there you are. Every time 't' grows by 1/4, (8pi t) grows by 2pi.
So if you graph this simple harmonic motion described by 'd', you'll
see the graph wiggle up and down with a period of 1/4 .
Answer: They create calcuim chloride, CaCl2
Answer:
The correct answer is B)
Explanation:
When a wheel rotates without sliding, the straight-line distance covered by the wheel's center-of-mass is exactly equal to the rotational distance covered by a point on the edge of the wheel. So given that the distances and times are same, the translational speed of the center of the wheel amounts to or becomes the same as the rotational speed of a point on the edge of the wheel.
The formula for calculating the velocity of a point on the edge of the wheel is given as
= 2π r / T
Where
π is Pi which mathematically is approximately 3.14159
T is period of time
Vr is Velocity of the point on the edge of the wheel
The answer is left in Meters/Seconds so we will work with our information as is given in the question.
Vr = (2 x 3.14159 x 1.94m)/2.26
Vr = 12.1893692/2.26
Vr = 5.39352619469
Which is approximately 5.39
Cheers!
Answer:
Please refer to the figure.
Explanation:
The crucial point here is to calculate the enclosed current. If the current I is flowing through the whole cross-sectional area of the wire, the current density is

The current density is constant for different parts of the wire. This idea is similar to that of the density of a glass of water is equal to the density of a whole bucket of water.
So,

This enclosed current is now to be used in Ampere’s Law.

Here,
represents the circular path of radius r. So we can replace the integral with the circumference of the path,
.
As a result, the magnetic field is
