1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
6

A) What magnitude point charge creates a 12596.37 N/C electric held at a distance of 0.593 m?

Physics
1 answer:
Oksana_A [137]3 years ago
8 0

Answer:

Q = 4.9216 * 10^{-7}C

Explanation:

Given

E = 12596.37 N/C

r = 0.593m

Required

Determine the magnitude point charge (Q)

This question will be solved using the\ magnitude of the electric field formula

E = \frac{kQ}{r^2}<em> </em>

Where

k = 9 * 10^9\ Nm^2 / C^2

Make Q the subject in E = \frac{kQ}{r^2}

E * r^2 = kQ

Q = \frac{E * r^2}{k}

Substitute values for E, r and k

Q = \frac{12596.37 * 0.593^2}{9 * 10^9}

Q = \frac{4429.50}{9 * 10^9}

Q = \frac{492.16}{10^9}

Q = 492.16 * 10^{-9}

Express in standard form

Q = 4.9216 * 10^2 * 10^{-9}

Q = 4.9216 * 10^{2-9}

Q = 4.9216 * 10^{-7}C

You might be interested in
A Ping-Pong ball has a mass of 2.3 g and a terminal speed of 9.4 m/s. The drag force is of the form bv^2 What is the value of b?
julia-pushkina [17]
Drag Force = bv^2 = ma; a = g = 9.81 m/s^2

b = mg/v^2 = (0.0023×9.81)/(9.4^2)

b = 0.000255


6 0
2 years ago
This type of water occurs as a liquid resource that is dispersed through numerous holes, pores, fractures, and cavities in bodie
777dan777 [17]

Answer:

C

Explanation:

Although this may seem surprising, water beneath the ground is commonplace. Usually groundwater travels slowly and silently beneath the surface, but in some locations it bubbles to the surface at springs. The products of erosion and deposition by groundwater were described in the Erosion and Deposition chapter.

Groundwater is the largest reservoir of liquid fresh water on Earth and is found in aquifers, porous rock and sediment with water in between. Water is attracted to the soil particles and capillary action, which describes how water moves through a porous media, moves water from wet soil to dry areas.

Aquifers are found at different depths. Some are just below the surface and some are found much deeper below the land surface. A region may have more than one aquifer beneath it and even most deserts are above aquifers. The source region for an aquifer beneath a desert is likely to be far from where the aquifer is located; for example, it may be in a mountain area.

The amount of water that is available to enter groundwater in a region is influenced by the local climate, the slope of the land, the type of rock found at the surface, the vegetation cover, land use in the area, and water retention, which is the amount of water that remains in the ground. More water goes into the ground where there is a lot of rain, flat land, porous rock, exposed soil, and where water is not already filling the soil and rock.

The residence time of water in a groundwater aquifer can be from minutes to thousands of years. Groundwater is often called “fossil water” because it has remained in the ground for so long, often since the end of the ice ages.

8 0
2 years ago
Read 2 more answers
HELPP WILL MARK BRAINLIEST!!!
guapka [62]
I guess it’s B cause that maybe is the output
3 0
2 years ago
Read 2 more answers
What are 3 ways an object can be charged
lorasvet [3.4K]
<span>pile
battery
<span>power sector</span></span>
8 0
2 years ago
PLEASE HELP ASAP
alina1380 [7]

Answer:

We mentioned in the study section of Lecture 2 that hydrogen and oxygen combine in the ratio of 1 to 8, but that this is not enough information for leading to the conclusion that two hydrogen atoms combine with one of oxygen to form a water molecule. A key idea is attributed to Avagadro who said that equal volumes of gas (at the same temperature and pressure) contain equal numbers of constituent atoms or molecules. Experiments show that two liters of hydrogen gas will combine with one liter of oxygen gas to form two liters of water vapor. Each hydrogen molecule in hydrogen gas consists of two hydrogen atoms bonded together. Likewise, two oxygen atoms bind to make a oxygen molecule.

A "model" of a physical process is used to represent what one actually observes, even though this is an "ideal" model and not expected to be correct in all respects. However, it is a good enough model to explain many of the properties of gases with sufficient accuracy.

The motion of gas particles can be used to explain the pressure exerted and the temperature of a gas. The pressure on a surface is due to the force on that surface divided by its area. The force comes about from the multiple impacts of individual gas particles. Temperature, on the other hand, is DEFINED in terms of the average kinetic energy assocated with the motion of the gas particles. The greater the kinetic energy, the greater the temperature. See the apparatus shown in Figure 7.6 of the text which gives a simple way of measuring the distributions of speeds of atomic particles.

To visualize how gas particles colliding with a container create pressure, see Website II.

Gas particles move in all possible directions with differing speeds. The Kinetic Energy (KE) of a gas particle is equal to 1/2 its mass times its speeds squared. That is KE = 1/2 M x V2 , where M is the mass of the gas particle and V is its speed. The gas particles have a range of speeds, just like cars on a road, but it is the average of the speed squared times the mass, or the average kinetic energy which characterizes the temperature of a gas.

High temperature is associated with high kinetic energies and low temperatures are associated with low kinetic energies. However, keep in mind that the kinetic energy, and in this case the temperature, is proportional to the mass times the speed squared. So heavy particles moving more slowly will have the same kinetic energy as light particles moving more rapidly. Also, because the kinetic energy varies as the square of the speed, if two particles have the same mass, but one moves twice as fast as the other, it will have four times the kinetic energy (or temperature).

If temperature is associated with kinetic energy of a gas, one could ask at this point what controls the temperature of solids and liquids. It turns out that it is the kinetic energy of the constituent atoms and molecules that characterize the temperature of liquids and solids as well. We show in class a transparency picturing a solid with its atoms rigidly connected to each other. We will discuss more about liquids and solids in the next lecture, based on chapter 8. However, for now, let's keep in mind that the atoms or molecules in a solid, although bound to its neighbors in a rigid structure, can oscillate back and forth, and it is this motion that characterizes the temperature of a solid (or in a similar manner, of a liquid as well). As before, rapid oscillations mean high temperatures, and slower oscillations are lower temperatures.

4 - The Three Temperature Scales

There are three temperature scales. In the United States, we commonly use the Farenheit scale while in most other nations, the Celsius or Centigrade scale is used. Figure 7.10 shows these two scales side by side. Water boils at 212 degrees Farenheit or 100 degrees Centigrade. Water freezes at 32 degrees Farenheit or zero degrees Centigrade. However, the most important temperature scale for scientific calculations is the absolute temperature scale, or the Kelvin scale. Zero degrees Kelvin is the coldest possible temperature: it can be physically interpreted as the situation where the atoms or molecules have zero kinetic energy...so this is a very natural temperature scale. Zero degrees Kelvin is also -273 degrees Centigrade. Water freezes at +273 degrees Kelvin and zero degrees Centigrate. Hence, a difference of one degree is the same on the Centigrade and Kelvin scales, but the zero points are different.

R.S. Panvini

9/2/2002Explanation:

8 0
2 years ago
Other questions:
  • Do you think the universe has a center
    14·1 answer
  • Which is commonly called the language of science
    13·1 answer
  • A force of 6N is exerted on a cart that is carrying a rock and produces an acceleration of 2 m/s2. If the cart has a mass of 1 k
    11·1 answer
  • A gas is compressed from an initial volume of 5.65 L to a final volume of 1.24 L by an external pressure of 1.00 atm. During the
    15·1 answer
  • The law of conservation of energy states
    10·1 answer
  • Why do we need optics now a days?
    12·1 answer
  • How do the early efforts of women during the suffrage movement compare to the later years
    10·1 answer
  • Which of the following are vector quantities?
    11·2 answers
  • Only the smartest person in science can help me right now...
    11·1 answer
  • A roller coaster, traveling with an initial speed of 21 m/s, decelerates uniformly at -3.5
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!