The formula for weight is always weight=mass X gravitational field strength.
We already know the mass is 75kg.
The gravitational field strength on the moon is 1.6N. To find out the weight, we can substitute these values in to the formula.
Weight=75 X 1.6
Weight= 120N
Weight is measured on Neutons as it is a force.
Answer:
The minimum coefficient of friction is 0.544
Solution:
As per the question:
Radius of the curve, R = 48 m
Speed of the car, v = 16 m/s
To calculate the minimum coefficient of static friction:
The centrifugal force on the box is in the outward direction and is given by:

where
= coefficient of static friction
The net force on the box is zero, since, the box is stationary and is given by:
That depends on what quantity is graphed.
It also depends on what kind of acceleration is taking place ...
continuous change of speed or continuous change of direction.
-- If the graph shows speed vs time, and the acceleration is a change
in speed, then the graph is a connected series of straight-line pieces.
Each straight piece slopes up if speed is increasing, or down if speed
is decreasing.
-- If the graph shows speed vs time, and the acceleration is a change in
direction only, then the graph is a straight horizontal line, since speed is
constant.
-- If the graph shows direction vs time, and the acceleration is a change
in speed only, then the graph is a straight horizontal line, since direction
is constant.
-- If the graph shows direction vs time, and the acceleration is a change
in direction, then the graph is a connected series of pieces of line.
Each piece may be straight if the direction is changing at a constant rate,
or curved if the direction is changing at a rate which grows or shrinks.
Each piece may slope up if the angle that defines the direction is growing,
or may slope down if the angle that defines the direction is decreasing.
-- If the graph shows distance vs time, and the acceleration is a
change in speed, then the graph is a connected series of pieces
of curves. Each piece curves up if speed is increasing, or down if
speed is decreasing.
-- If the graph shows distance vs time, and the acceleration is a change
in direction only, then the graph is a straight line sloping up, since speed
is constant.
Answer:
The answer is 3213.6 grams.
Explanation:
In meters the room dimensions are 3.05-3.2-6.86.
Total volume of the room is:

66.95 m3.
The density of carbon monoxide is 48 g/m3. Then total grams is present in a room measuring:

To solve this problem it is necessary to apply the kinematic equations of movement description, specifically those that allow us to find speed and acceleration as a function of distance and not time.
Mathematically we have to

Where,
Final velocity and Initial velocity
a = Acceleration
x = Displacement
From the description given there is no final speed (since it reaches the maximum point) but there is a required initial speed that is contingent on traveling a certain distance under the effects of gravity


Therefore the speed which must a rock thrown straight up is 14*10^2m/s to reach the edge of our atmosphere.
The displacement and gravity traveled are the same, therefore the final speed will be the same but in the opposite vector direction (towards the earth), that is 