An impact which stops a moving object must do enough work to take away its kinetic energy, so extending the distance moved during the collision reduces the impact force.
Explanation:
Exothermic reaction are those in which heat releases during a reaction
A 100 g cart is moving at 0.5 m/s that collides elastically from a stationary 180 g cart. Final velocity is calculated to be 0.25m/s.
Collision in which there is no net loss in kinetic energy in the system as a result of the collision is known as elastic collision . Momentum and kinetic energy both are conserved quantities in elastic collisions.
Collision in which part of the kinetic energy is changed to some other form of energy is inelastic collision.
For an elastic collision, we use the formula,
m₁V₁i+ m₂V₂i = m₁V1f + m₂V₂f
For a perfectly elastic collision, the final velocity of the 100g cart will each be 1/2 the velocity of the initial velocity of the moving cart.
Final velocity = 0.5/2
=0.25 m/s.
To know more about elastic collision, refer
brainly.com/question/7694106
#SPJ4
Answer:
Both are true under specific circumstances. And are related to Boyle's law. volume and pressure in a gas are inversely proportional.
Explanation:
There is a tendency to entropy in our reality, that is, in particular true and visible with gases, they tend to occupy the whole space where they are confined, when we heat a volume of gas, then the movement of the particles and in consequence the pressure of the gas increases and to compensate this the volume tends to be increased too, according to Boyle's law. And the opposite happens when the volume is increased, then the pressure is relieved and since the particles are further one from each other, then the temperature is lower, and therefore it cools down.