Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.
Answer:
The force becomes 16 times what it is now.
Explanation:
The formula for gravitational force is
F = G * m1 * m2 / r^2
When you do what you have described, you are setting a stage that not even the USS Enterprise (Star Trek) can get out of. The increase is huge.
If you double m1 and m2 and don't do anything to r, you've already increased the force by 4 times. (2m1 * 2m2 = 4 * m1 * m2)
But you are not finished. If you 1/2 the distance, you are again increasing the Force by 4 times. 1 / (2r) ^2 = 1/ 4* r^2
Because this is in the denominator, the 1/4 is going to flip to the numerator.
So the total increase is going to be 4 * (4 * m1 * m2) = 16 * m1 * m2.
Think about what that means. If you were out golfing, your drives would be roughly 1/16 times as far as they are now. Also you would be lugging around 16 times your weight around the golf course. My feeling is that you would never finish 5 holes at that rate.
If the desk doesn't move, then it's not accelerating.
If it's not accelerating, then the net force on it is zero.
If the net force on it is zero, then any forces on it are balanced.
If there are only two forces on it and they're balanced, then they have equal strengths, and they point in opposite directions.
So the friction on the desk must be equal to your<em> 245N</em> .
Answer: D.) electromagnetic induction
Explanation: Electroctromagnetic induction may be explained as a process whereby electric current is induced or produced by difference in potential resulting from the movement of conductor across a magnetic field.
In simple terms, an electromotive force is induced when a magnet is moved through a conducting loop.
The electromotive force produced by moving a magnet through a conducting loop can be represented by the relation:
E = - N (dΦ / dt)
Where E = electromotive force in voltage
N = number of loop in conductor
dΦ = change in magnetic Flux
dt = change in time