Percentage Weight-in-volume is defined as the <em><u>number of grams of a solute in a 100 ml (milliliters) solution.</u></em>
<u />
<u>Percentage Weight-in-volume</u> can tell us about the <em>degree of concentration of a given solution.</em>
<em><u /></em>
The solute can be <em>crystalline or non-crystalline in nature.</em>
<em></em>
The <u>number of grams of glucose</u> present in a <u>5% glucose solution</u> is 5 grams.
- This question is based on a Percentage Weight-in-volume. The formula states that:
a% of a glucose solution =<u> a grams of glucose in a 100 mL solution</u>
Hence, 5% glucose solution = 5 grams of glucose / 100 mL solution
Therefore, the <u>number of grams of glucose</u> present in a <u>5% glucose solution</u> is 5 grams.
To learn more, visit the link below:
brainly.com/question/8482854
Answer:
X = 4
Explanation:
Start 2800
End 175
175 = 2800x(0.5)^X
175/2800 = 0.5^X
0.0625 = 0.5^X
log(0.5 x) = log(0.0625)
x · log(0.5) = log(0.0625)
-0.301x = -1.204
x = -1.204/-0.301
x = 4
It says on google
<span>An acid-base indicator (e.g., phenolphthalein) changes color depending on the pH. Redox indicators are also frequently used. A drop of indicator solution is added to the titration at the start; when the color changes the endpoint has been reached, this is an approximation of the equivalence point.</span>
Answer: Bohr proposed his quantized shell model of the atom to explain how electrons can have stable orbits around the nucleus.
so C would seems to be right.
Explanation: The energy of an electron depends on the size of the orbit and is lower for smaller orbits. Radiation can occur only when the electron jumps from one orbit to another. The atom will be completely stable in the state with the smallest orbit, since there is no orbit of lower energy into which the electron can jump.
Answer:
1 g
Explanation:
The half-life of Am-242 (16 h) is the time it takes for half of it to disappear.
We can make a table of the mass left after each half-life.

The mass remaining after 48 h is 1 g.