I think its a tbh bc it seems to be the best answer out of a b c and d
The solution is:
Paige's force is (somewhat) against the direction of motion: Work = F * d Where F is the force; andd is the distance
Our f is 64 N and our distance is 20 and -3.6Plugging that in our equation will give us:
= 64N * cos20º * -3.6m = -217 J
Explanation:
For a circular orbit v=
with G = 6.6742 × 
Given m = 6.42 x 10^23 kg and r=9.38 x 10^6 m
=> v = 2137.3 m/s
I hope this is the correct way to solve
If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".
Communication circuit <em>(D)</em> is becoming more common in residential electrical design and construction.
LAN Ethernet cables, outlets, and even hubs and bridges, are being built into the walls of new homes, along with the usual electrical outlet wiring, to give the owner the networking infrastructure and internet access that everybody needs now ... without stringing a mess of cables on the floor and through doors all over the house.