Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:

Explanation:
In my view, when the Object A is attracted to a Charged object B. Object B should be Negatively or Positively charged. So Object B should be the Opposite charged according to the Object B
Example =
If Object B is Negatively Charged, the Object A should be Positively Charged
If the Object B is Positively Charged, the Object A should be Negatively Charged
Sometimes it can Mix as a Neutral as well
Hope this Helps
To solve this problem it is necessary to apply the concepts related to the geometry of a cylindrical tank and its respective definition.
The volume of a tank is given by

Where
d = Diameter
h = Height
Considering that there are two stages, let's define the initial and final volume as,


We know as well by definition that

Then we have for the statement that


Replacing the previous data


Solving to get h,

Therefore the change is



Therefore te change in the height of the water in the tank is 0.37mm
Answer:
d = 0.05 [m] = 50 [mm]
Explanation:
We must remember the principle of conservation of energy which tells us that energy is transformed from one way to another. For this case, the initial kinetic energy is transformed into useful work that is equal to the product of force by distance.
![E_{k}=F*d\\400 = 8000*d\\d = 0.05 [m] = 50 [mm]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DF%2Ad%5C%5C400%20%3D%208000%2Ad%5C%5Cd%20%3D%200.05%20%5Bm%5D%20%3D%2050%20%5Bmm%5D)