1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
6

What are the inner planets relative distance from the Sun

Physics
2 answers:
Inessa [10]3 years ago
5 0
Closer than the outer planets, inside the Asteroid Belt between Mars and Jupiter.
ddd [48]3 years ago
3 0

There are two types of planets as classifieds by astronomers in our solar system.

The classification is based on the asteroid belt present in our solar system.

These are named as - [1] inner planets

                                    [2]outer planets

The inner planets are the planets which are  very close to the sun and present before the asteroid belt starting from sun.

The outer planets which are present after the asteroid belt are Jupiter,Uranus,Neptune and Pluto[if we consider Pluto as a planet]

There are four planets considered as inner planets. These are arranged from closest to the farthest as Mercury,Venus,Earth ad Mars.

The distance of Mercury from the sun is 57.91 million km

The distance of Venus from sun is 108.2 million km

The distance of Earth from sun  is 149.6 million km

Finally the distance of Mars from the sun is 227.9 million km


You might be interested in
Which is the best procedure to make a permanent magnet?
notka56 [123]

placing a magnetically hard material in a strong magnetic field

7 0
3 years ago
Read 2 more answers
A 460 g , 6.0-cm-diameter can is filled with uniform, dense food. It rolls across the floor at 1.1 m/s . Part A What is the can'
Reika [66]

Answer:

the can's kinetic energy is 0.42 J

Explanation:

given information:

Mass, m = 460 g = 0.46 kg

diameter, d = 6 cm, so r = d/2 = 6/2 = 3 cm = 0.03 m

velocity, v = 1.1 m/s

the kinetic energy of the can is the total of kinetic energy of the translation and rotational.

KE = \frac{1}{2} I ω^2 + \frac{1}{2} mv^{2}

where

I = \frac{1}{2} mr^{2} and ω = \frac{v}{r}

thus,

KE = \frac{1}{2} \frac{1}{2} mr^{2} (\frac{v}{r})^2 + \frac{1}{2} mv^{2}

     = \frac{1}{2} \frac{1}{2} mr^{2} \frac{v^{2} }{r^{2}} + \frac{1}{2} mv^{2}

     = \frac{1}{4} mv^{2} + \frac{1}{2} mv^{2}

     = \frac{3}{4} mv^{2}

     = \frac{3}{4} (0.46) (1.1)^{2}

     = 0.42 J

8 0
3 years ago
Sully uses a battery and a coil of wire to create an electromagnet. Using the same materials, if he wants to increase the streng
garik1379 [7]
An electromagnet is a type of magnet in which the magnetic field is produced using the current. The simplest form of an electromagnet is a wire wrapped around in a coil.
The strength of magnetic field of such magnet is given with this equation:
B=\frac{NI\mu}{L}
Where N is the number of loops in the coil, I is the strength of the current flowing through the coil, L is the length of the coil, and \mu is <span>permeability of the electromagnet core material.
From this equation, we can see that increasing both the current and number of loops will increase the strength of the magnet.
Both BLANKS should be Increase. When you use the additional battery you will have more voltage and more voltage means more electricity.</span>
5 0
3 years ago
Which diagram represents deposition?
Vera_Pavlovna [14]

Your answer will be gas

3 0
3 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Other questions:
  • What is the energy transformation that occurs in an electric fan heater
    12·1 answer
  • Form a hypothesis. Which will be greater, the potential energy of the car at the top of the ramp or the kinetic energy of the ca
    11·1 answer
  • QUICK PLEASE HELP!<br><br> What do sound waves, light waves, and ocean waves all have in common?
    5·1 answer
  • As part of their research on cell reproduction, Ms. Kelly's biology class designed various experiments to determine the best con
    15·1 answer
  • Plz help!!!! Will give brainiest!!!<br><br> Balance the following equation:<br><br> Li + Cl2 = LiCl
    7·1 answer
  • Helloooooooooooo<br><br><br> A) HI<br><br> B) GO AWAY<br><br> C) BYE FELICIA<br><br> D) HELLO MATE
    13·1 answer
  • In the modern quantum-based atomic theory, what is the name given to a particular space around the nucleus in which an electron
    14·1 answer
  • Suppose you take a short piece of wire that is not attached to anything and move it up and down in a magnetic field. Explain whe
    14·2 answers
  • The standard unit of brightness is called the candela.<br> True<br> False
    10·1 answer
  • Which of the following is true about mutations in somatic cells?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!