Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly
I have absolutely no clue
==> Jot down notes before and after making each call, and avoid calling during business hours when people are busy.
==> Save all emails and bills, and follow up to make sure people did what they said they would do.
Use the Inverse square law, Intensity (I) of a light is inversely proportional to the square of the distance(d).
I=1/(d*d)
Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.
L1/L2=(D2*D2)/(D1*D1)
L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
Answer:5.7m/s
Explanation:
Mass=1kg
Initial velocity=u=8m/s
height=h=1.6m
Final velocity =v
Acceleration due to gravity=g=9.8m/s^2
v^2=u^2-2xgxh
v^2=8^2-2x9.8x1.6
v^2=8x8-2x9.8x1.6
v^2=64-31.36
v^2=32.64
Take the square root of both sides
√(v^2)=√(32.64)
v=5.7
Speed at the height of 1.6m is 5.7m/s