Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.
If the collision is inelastic, there is every possibility that the large body will drag the small stationary body along with it in the direction of the collision. Some amount of heat, light and sound energy will also be produced due to the kinetic energy of the large body. I hope the answer helps you.
Answer:
Capacitor
Explanation:
Capacitor ; A capacitor is a passive two-terminal electrical component that can store energy in an electric field electrostatically. It works as a small rechargeable battery that stores electricity. However, unlike a battery, it can charge and discharge in the split of a second. Capacitors are widely used to build different types of electronic circuits.
Answer: d. I or II
Explanation: A traveling wave has speed that depends on characteristics of a medium. Characteristics like linear density (μ), which is defined as mass per length.
Tension or Force (
) is also related to the speed of a moving wave.
The relationship between tension and linear density and speed is ginve by the formula:

So, for the traveling waves generated on a string fixed at both ends described above, ways to increase wave speed would be:
1) Increase Tension and maintaining mass and length constant;
2) Longer string will decrease linear density, which will increase wave speed, due to their inversely proportional relationship;
Then, ways to increase the wave speed is
I. Using the same string but increasing tension
II. Using a longer string with the same μ and T.
2^4/2^7 = 16/128 = 0.125
(1/2)^3= 0.125
1/8= 0.125
a and f are equivalent