Electronegativity<span> is the measure of the ability of an atom to attract electrons to itself. Fluorine is the most </span>electronegative<span> element and francium is one of the least</span>electronegative<span>. ... The </span>molecule's polarity<span> will be determined on the negative and positive regions on the outer atoms in the </span>molecule<span>.</span>
Answer:
It is equal to Avogadro's number (NA), namely 6.022 x1023. If we have one mole of water, then we know that it will have a mass of 2 grams (for 2 moles of H atoms) + 16 grams (for one mole O atom) = 18 grams.
Explanation:
The question is not very much clear.
If you are asking for molecules then 1 mole water= 6.023 * 10^23
If you are asking for atoms then 1 mole water= 6.023 * 10^23 * 3
If you are asking for particles then,
So, in your example you would have one mole of water molecules. If you dissociated those water molecules, than you would end up with 2 moles of hydrogen atoms, and one mole of oxygen atoms.
I hope that was helpful!
H=1 proton,1 electron
O=8 protons,8 neutrons and 8 electrons
total particles in one H2O molecule-28
total no. of particles in 1 mole of water- 6.023 * 10^23 * 28
The answer is B. Suspension. Suspension mixtures are composed of two or more materials mixed together wherein the solute particles are usually larger than those found in a solution or colloid. In cases of solid-fluid suspension mixtures, the solid solute particles tend to settle at the bottom of the mixture after some time.
At first sight it doesn't bode well. The key is in how firmly the protons and neutrons are held together. In the event that an atomic response produces cores that are more firmly bound than the firsts then vitality will be created, if not you should place vitality into make the response happen.
94.20 g/3.16722 mL = 29.74 g/mL
The ratio of mass to volume is equal to the substance's density. Thus, 29.74 g/mL is the density of whatever substance it may be. Density does not change for incompressible matter like solid and some liquids. Although, it may be temperature dependent.