Answer:
investment 10 years from now is $1,238,000
.
Explanation:
given data
sum = $500,000
rate = 12% =0.12
total time = 10 year
solution
as present value After 2 years from now is $500,000
so time period is now = 8 year ( 10 - 2 )
so we apply future value formula that is
Future value = present value ×
............1
put here value we get
Future value = $500,000 ×
Future value = $500,000 × 2.476
Future value = $1,238,000
so investment 10 years from now is $1,238,000
.
Answer:
the police officer cruise each streets precisely once and he enters and exit with the same gate.
Explanation:
NB: kindly check below for the attached picture.
The term ''Euler circuit'' can simply be defined as the graph that shows the edge of K once in a finite way by starting and putting a stop to it at the same vertex.
The term "Hamiltonian Circuit" is also known as the Hamiltonian cycle which is all about a one time visit to the vertex.
Here in this question, the door is the vertex and the road is the edge.
The information needed to detemine a Euler circuit and a Hamilton circuit is;
"the police officer cruise each streets precisely once and he enters and exit with the same gate."
Check attachment for each type of circuit and the differences.
Answer:
ΔQ = 4930.37 BTu
Explanation:
given data
height h = 8ft
Δt = 8 hours
length L = 24 feet
R value = 16.2 hr⋅°F⋅ft² /Btu
inside temperature t1 = 68°F
outside temperature t2 = 16°F
to find out
number of Btu conducted
solution
we get here number of Btu conducted by this expression that s
......................1
here A is area that is = h × L = 8 × 24 = 1492 ft²
put here value we get
solve it we get
ΔQ = 4930.37 BTu
C, because a narrow structure evacuation below surface ground isn’t the best and a structure holding forces and isn’t to do with the question at all and d doesn’t matter if there include away or not
Answer:
e= 50 J/kg
Explanation:
Given that
Speed ,v= 10 m/s
Diameter of the turbine = 90 m
Density of the air ,ρ = 1.25 kg/m³
We know that mechanical energy given as

That is why mechanical energy per unit mass will be

Now by putting the values in the above equation we get

e= 50 J/kg
That why the mechanical energy unit mass will be 50 J/kg.