Answer:
A degree in architecture with 60 credit hours.
Explanation:
The requirements need for a student to qualify for a two year master of architecture degree are;
- 60 credit hours in architecture
- Complete 60 credit hours in related area of profession such as; planning, landscape architecture ,public health and others.
- 45 credit hours in architecture course at the level of 500/600
Explanation:
The correct answers to the fill in the blanks would be;
1. Viscoelastic stress relaxation refers to scenarios for which the stress applied to a polymer must decay over time in order to maintain a constant strain. Otherwise, over time, the polymer chains will slip and slide past one another in response to a constant applied load and the strain will increase (in magnitude).
2. Viscoelastic creep refers to scenarios for which a polymer will permanently flow over time in response a constant applied stress.
The polymer whose properties have been mentioned above is commonly known as Kevlar.
It is mostly used in high-strength fabrics and its properties are because of several hydrogen bonds between polymer molecules.
Answer:
The stress in the rod is 39.11 psi.
Explanation:
The stress due to a pulling force is obtained dividing the pulling force by the the area of the cross section of the rod. The respective area for a cylinder is:

Replacing the diameter the area results:

Therefore the the stress results:

Answer: Yes army people are good people but it also depends on how you fraze that some have been in trouble before but it doesnt mean there bad people we all make mistakes
Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.