The correct answer is 1.4285714.
In physics, velocity is characterised as a vector measurement of the motion's direction and speed. To be more precise, the rate of change in an object's position relative to a frame of reference and time is another way to describe velocity. The definition of velocity simply states the rate of motion of an object in a specific direction. It determines how quickly or slowly something is going.
Velocity = distance/ time
Thus time = distance/velocity
Here velocity = 350m/s
diatnce = 500 m
time = 500/350
time = 1.42857142857
t= 200m /350m/s = 1.4285714
To learn more about velocity refer the link:
brainly.com/question/18084516
#SPJ9
Answer:
"8 units" is the appropriate answer.
Explanation:
According to the question,
Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.
Now,
The total energy will be:
= 
= 
The total number of particles will be:
= 
= 
hence,
Energy of each A particle or each B particle will be:
= 
= 
Answer:
Explanation:
1 )
We shall apply conservation of momentum law to solve the problem.
mv = ( M +m) V , m and M are masses of small and large object , v is the velocity of small object before collision and V is the velocity of both the objects together after collision .
.5 x .2 = (1.5 + .5)V
V = .05 m /s
2 ) We shall use formula for velocity of object after elastic collision as follows
v₁ = 
m₁ and m₂ are masses of first and second object u₁ and u₂ are their initial velocity and v₁ and v₂ are their final velocity.
Putting the values
= 
= - .66 m /s
Since the sign is negative so it will be in opposite direction .
The answer for this question is letter "B.Fission releases energy, and its products have greater stability."
Fission and Fusion are both nuclear reactions that when they release energy, they make the nuclei more stable. So among the choices, option B is the most fitting for the definition.
Answer:
416.667 m/s
Explanation:
divide the distance by the time