Sediment is created by wind and water.
The answer is Ka = 1.00x10^-10.
Solution:
When given the pH value of the solution equal to 11, we can compute for pOH as
pOH = 14 - pH = 14 - 11.00 = 3.00
We solve for the concentration of OH- using the equation
[OH-] = 10^-pOH = 10^-3 = x
Considering the sodium salt NaA in water, we have the equation
NaA → Na+ + A-
hence, [A-] = 0.0100 M
Since HA is a weak acid, then A- must be the conjugate base and we can set up an ICE table for the reaction
A- + H2O ⇌ HA + OH-
Initial 0.0100 0 0
Change -x +x +x
Equilibrium 0.0100-x x x
We can now calculate the Kb for A-:
Kb = [HA][OH-] / [A-]
= x<span>²</span> / 0.0100-x
Approximating that x is negligible compared to 0.0100 simplifies the equation to
Kb = (10^-3)² / 0.0100 = 0.000100 = 1.00x10^-4
We can finally calculate the Ka for HA from the Kb, since we know that Kw = Ka*Kb = 1.0 x 10^-14:
Ka = Kw / Kb
= 1.00x10^-14 / 1.00x10^-4
= 1.00x10^-10
The ideal gas law:

p - pressure, n - number of moles, R - the gas constant, T - temperature, V - volume
The volume and temperature of all three containers are the same, so the pressure depends on the number of moles. The greater the number of moles, the higher the pressure.
The mass of gases is 50 g.

The greatest number of moles is in the container with Ar, so there is the highest pressure.
The molarity of this should be around 0.846
-----
Formula: M= mols/liters
-----
So… M= 11.6/13.7⇒ 0.846
-----