Answer:
7.41 × 10⁻⁵
Explanation:
Let's consider the basic dissociation reaction of trimethylamine (CH₃)N).
(CH₃)N + H₂O = (CH₃)NH⁺ + OH⁻
According to Brönsted-Lowry, in this reaction (CH₃)N is a base and (CH₃)NH⁺ is its conjugate acid. The pKb for (CH₃)N is 9.87. We can calculate the pKa of (CH₃)NH⁺ using the following expression.
pKa + pKb = 14
pKa = 14 - pKb = 14 - 9.87 = 4.13
Then, we can calculate the acid dissociation constant for (CH₃)NH⁺ using the following expression.
pKa = -log Ka
Ka = antilog - pKa = antilog -4.13 = 7.41 × 10⁻⁵
Most likely the equation yields a new compound XY. This is a synthesis reaction. <span>Synthesis
reaction is a reaction where two or more substances combine to form a new
compound. It is a reaction which releases energy in the form of heat and
light. Therefore, it is an exothermic reaction.</span>
The stars in the solar system are made of hydrogen and helium
Answer:
Q = 2.60 •
J
Explanation:
Our specific heat capacity equation is:
Q = mC∆T
Q is the energy in joules.
m is the mass of the substance.
∆T is the temperature chance.
Let's plug in what we know.
- We have 76.0 g of octane
- The specific heat capacity of octane is 2.22 J/(g•K)
- The temperature increases from 10.6º to 26.0º (a 15.4º increase)
Q = 76.0(2.22)(15.4)
Multiply.
Q = 2598.288
We want three significant figures.
Q = 2.60 • 
or
Q = 2590 J
Hope this helps!
Moles * Avogadro constant = 5.52 * <span>6.022 x 10^23</span>