Answer:
[CO2] > [N2] > [He]
Explanation:
The relative concentration of CO2, N2 and He depends on the solubility of each gas in water. The more soluble in water a gas is, the greater its concentration in aqueous solution.
Among the gases listed, CO2 is most soluble in water hence it is expected to have the greatest concentration in solution followed by N2. Helium gas is insoluble in water hence it has the least concentration in the aqueous solution.
Answer:

Explanation:
The ideal gas law equation is an equation that relates some of the quantities that describe a gas: pressure, volume and temperature.
The equation is:

where
p is the pressure of the gas
V is the volume of the gas
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature of the gas (must be expressed in Kelvin)
Here we want to solve the equation isolating p, the pressure of the gas.
We can do that simply by dividing both terms by the volume, V. We find:

So, we see that:
- The pressure is directly proportional to the temperature of the gas
- The pressure is inversely proportional to the volume of the gas
If two different elements combine separately with a fixed mass of a third element, the ratio of the masses in which they do so are either the same as or a simple multiple of the ratio of the masses in which they combine with each other.
Answer:
14 mL
Explanation:
To prepare a solution by a concentrated solution, we must use the equation:
C1xV1 = C2xV2, where <em>C</em> is the concentration, <em>V</em> is the volume, 1 is the initial solution and 2 the final solution.
The final solution must have 2 mL and a concentration of 350 pg/mL, and the initial solution has a concentration of 50 pg/mL.
Then:
50xV1 = 350x2
50xV1 = 700
V1 = 700/50
V1 = 14 mL
Physical because it is still H2O