The normal force acting on the object is 500 N in the upward direction
<u>Explanation:</u>
As George is applying a downward force, the normal force will be in the upward direction. The normal force will be exerted due to the acceleration due to gravity exerted on the object.
So, as per Newton's second law, the normal force acting on the object can be measured by the product of mass of the object and the acceleration due to gravity acting on the object.
But as the acceleration due to gravity is a downward acting acceleration and the normal force is a upward acting force, so the acceleration will be having a negative sign in the formula.

Here, acceleration due to gravity g = -10 m/s² and mass is given as 50 kg, then
Normal force = 50 × (-10) = -500 N
So, the normal force acting on the object is 500 N in the upward direction.
Answer:
Wavelength = 10 m
Explanation:
Given:
Speed = 100 m
Frequency = 10 Hz = 10 
To find : Wavelength = ?
We know that the relationship between wavelength λ, frequency f and speed v is given by the equation
v = fλ
Therefore wavelength λ = v/f
= 100 m
/ 10 m
= 10 m
Hence wavelength = 10 m
Work = force * distance.
We must produce twice as much energy as we are lifting the weight twice as high.
But we are not increasing the force so we must increase the length of the ramp ( distance ) instead.
The new length will be twice as great as the previous length.
So 8 metres is required.
25 kg * 8 m = work = 100 kg * 2 m
Answer:

Explanation:
Given:
- spring constant of the spring attached to the input piston,

- mass subjected to the output plunger,

<u>Now, the force due to the mass:</u>



<u>Compression in Spring:</u>



or

450 J / 3 s = 150 J/s = 150 watts.