Answer:
The quantity of heat required to melt all the ice at 0°C is 2.21 * 10⁶ J
Explanation:
Latent heat of fusion is the heat absorbed by a unit mass of a given solid at its melting point that completely converts the solid to a liquid at the same temperature. Its unit is Joules/kg or Joules/g.
1 calorie = 4.184 Joules
Therefore , 80.0 cal/g = 80.0 cal/g * 4.184 J/cal = 334.72 J/g
1 g = 0.001 kg; Heat of fusion in J/kg = 334.72 J/g * 1g /0.001 kg = 3.35 * 10⁵ J/kg
Quantity of heat, Q = mass * latent heat of fusion of ice
quantity of heat required = 6.60 kg * 3.35 * 10⁵ J/kg
Quantity of heat required = 2.21 * 10⁶ J
Therefore, the quantity of heat required to melt all the ice at 0°C is 2.21 * 10⁶ J
Answer:
Particles would move more freely, while still staying close together depending on the shape of the liquid
Explanation:
Melting is the process of going from a solid to a liquid due to the increase in heat/energy. This increase in heat/energy increases the speed at which the atoms within the object moves. Lets say we had an ice cube. While it is a cube, the particles inside the cube are slow and compact, staying close together.
When enough energy is gained, this makes the particles begin to move faster, gaining heat and energy which results in the ice cube melting and moving more freely than normal.
Answer:
Maybe I know too much chemistry but how the metals (and the non-metals) react depends on where they are in the Periodic Table. The metals in groups I and II over on the far left side are explosively reactive and loose electrons and form ionic bonds. Examples: Na+1 has lost 1 electron and Li+2 has lost 2 electrons. The metals in the higher groups are more confusing but most of them share outer shell electrons and form covalent bonds. Examples: Fe2O3 (rust) where Iron shares 2X3 electrons with Oxygen which shares 3X2 electrons. Confused enough? :-)
The answer you'll be expected to give depends on the subject of the chapter you're studying. If you're studying covalent bonds, then the answer will probably be "form covalent bonds". If you're studying ionic bonds, then the answer will be "lose electrons".
Explanation:
This may not be the answer... I'm sorry if it's not
Explanation:
The density of a substance can be found by using the formula

From the question
mass of block = 5 g
volume = 15 mL
The density of the block is

We have the final answer as
<h3>0.33 g/mL</h3>
The block will float on water since it's density is less than that of water which is 1 g/mL
Hope this helps you