(a) The average velocity of the particle in the time interval t₁=2sec and t₂=3sec is 10 m/s.
(b) The velocity and acceleration at any time t is v = (4ti + j) m/s and a = a = 4i m/s²
(c) The average acceleration in the time interval given in part (a) is 3.98 m/s².
<h3>Position of the particle</h3>
x = at²i + btj
x = 2t²i + tj
<h3>Average velocity, at t₁=2sec and t₂=3sec</h3>
Δv = Δx/Δt
x(2) = 2(2)²i + 2j
x(2) = 8i + 2j
|x(2)| = √(8² + 2²) = 8.246
x(3) = 2(3)²i + 3j
x(3) = 18i + 3j
|x(3)| = √(18² + 3²) = 18.248
Δv = (18.248 - 8.246)/(3 - 2)
Δv = 10 m/s
<h3>Velocity and acceleration at any time, t</h3>
v = dx/dt
v = (4ti + j) m/s
a = dv/dt
a = 4i m/s²
<h3>Average acceleration</h3>
v(2) = 4(2)i + j
v(2) = 8i + j
|v(2)| = 8.06 m/s
v(3) = 4(3)i + j
v(3) = 12i + j
|v(3)| = 12.04 m/s
a = (12.04 - 8.06)/(3 - 2)
a = 3.98 m/s²
Learn more about average acceleration here: brainly.com/question/104491
#SPJ1
Answer:
use the formula mass over volume
The dependent variable is the amount of time it takes for the water to boil. This variable is dependent because is depends on the amount of salt.
Answer:
The consecutive charge configuration has a more intense field than alternating
Explanation:
In each corner we place a different account there are only two different settings, see attached.
In the case of alternating charging (+ - + -) see diagram 1, the electric field in the center is canceled in pairs, resulting in a zero field
In the case of consecutive loads (+ + - -) in this case we have a result between the two charges, therefore the total field is
E = 2 k q / ra2 a cos 45
The consecutive charge configuration has a more intense field than alternating