The answer to this question is amplitude
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
Angles, they line up their pool que with the pocket and make the shot
Answer:
The answer is the principal Quantum number (n)
Explanation:
The principal quantum number is one of the four quantum numbers associated with an atom.
It is denoted by a number n=1,2,3,4 etc
It tells both size (directly) and energy (indirectly) of an orbital.
When n=1 means it is the closest to the nucleus and is the smallest orbital and with increase in principal quantum number, it depicts that size of the orbital is increasing.
It tells the energy of the orbital as well as smaller number means less distance from nucleus and having less energy. Since electrons requires to absorb energy to jump into higher orbitals making n=2,3,4 etc. Thus electrons in the orbitals with higher n number indicates higher energy orbitals.
The amount of heat in the body in joule