1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
9

A student stays at her initial position for a bit of time, then walks slowly in a straight line for a while, then stops to rest

awhile and finally runs quickly back to her initial position along a straight line.
Required:
Draw displacement versus time plots best represents the student’s trip?
Physics
1 answer:
True [87]3 years ago
6 0

Answer:

The first interval is walked slowly, this is a straight line with a small slope

Second interval stops, which gives a horizontal line, indicating the same position

Third interval, walk back, straight downhill

Explanation:

In this problem we have a uniform movement, this means that the acceleration in each intervals

              x = v t

 

The first interval is walked slowly, this is a straight line with a small slope

Second interval stops, which gives a horizontal line, indicating the same position

Third interval, walk back, straight downhill

You might be interested in
8. What is the frequency of green light waves that have a wavelength of 5.2 x 10-7 m.? The speed of light is 3.0 x 108 m/s
o-na [289]

Answer:

f=5.76\times 10^{14}\ Hz

Explanation:

We need to find the frequency of green light having wavelength o5.2\times 10^{-7}\ m. It can be calculated as follows :

c=f\lambda\\\\f=\dfrac{c}{\lambda}\\\\f=\dfrac{3\times 10^8}{5.2\times 10^{-7}}\\\\f=5.76\times 10^{14}\ Hz

So, the required frequency of green light is equal to 5.76\times 10^{14}\ Hz.

4 0
3 years ago
A round pipe of varying diameter carries petroleum from a wellhead to a refinery. At the wellhead, the pipe's diameter is 50.9 c
seraphim [82]

Answer:

Flow rate 2.34 m3/s

Diameter 0.754 m

Explanation:

Assuming steady flow, the volume flow rate along the pipe will always be constant, and equals to the product of flow speed and cross-section area.

The area at the well head is

A = \pi r_w^2 = \pi (0.509/2)^2 = 0.203 m^2

So the volume flow rate along the pipe is

\dot{V} = Av = 0.203 * 11.5 = 2.34 m^3/s

We can use the similar logic to find the cross-section area at the refinery

A_r = \dot{V}/v_r = 2.34 / 5.25 = 0.446 m^2

The radius of the pipe at the refinery is:

A_r = \pi r^2

r^2 =A_r/\pi = 0.446/\pi = 0.141

r = \sqrt{0.141} = 0.377m

So the diameter is twice the radius = 0.38*2 = 0.754m

6 0
3 years ago
In the graph, which region shows nonuniform positive acceleration?
cricket20 [7]

Answer: A.AB

Explanation:

This Velocity vs Time graph shows the acceleration of a body or object, since acceleration is the variation of velocity in time.

As we can see in the attached image, the graph can be divided in four segments:

OA: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a positive slope, hence we are dealing with a positive uniform acceleration.

AB: In this segment the acceleration is changing at a nonuniform rate, since  in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be positive. This means the <u>acceleration is nonuniform and positive.</u>

BC: In this segment the acceleration is changing at a nonuniform rate, since  in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be negative. This means the acceleration is nonuniform and negative.

CD: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a negative slope, hence we are dealing with a negative uniform acceleration.

From all these segments, the only one that fulfils the nonuniform positive acceleration condition is option A:

Segment AB

3 0
3 years ago
Read 2 more answers
Which is the 2nd closest star to earth??
IgorLugansk [536]

Answer:

Proxima Centauri

Explanation:

U 2 can help me by marking as brainliest........

8 0
3 years ago
Read 2 more answers
1.a bag is dropped from a hovering helicopter. the bag has fallen for 2 s. what is the ball's velocity at the instant its hittin
omeli [17]

1. The bag's velocity immediately before hitting the ground.

Recall this kinematics equation:

Vf = Vi + aΔt

Vf is the final velocity, Vi is the initial velocity, a is the acceleration, and Δt is the time elapsed.

Given values:

Vi = 0m/s (you assume this because the bag is dropped, so it falls starting from rest)

a is 9.81m/s² (this is the near-constant acceleration of objects near the surface of the earth)

Δt = 2s

Plug in the values and solve for Vf:

Vf = 0 + 9.81×2

Vf = 19.62m/s

2. The height of the helicopter.

Recall this other kinematics equation:

d = ViΔt + 0.5aΔt²

d is the distance traveled by the object, Vi is the initial velocity, a is the acceleration, and Δt is the time elapsed.

Given values:

Vi = 0m/s (bag is dropped starting from rest)

a = 9.81m/s² (acceleration due to gravity of the earth)

Δt = 2s

Plug in the values and solve for d:

d = 0×2 + 0.5×9.81×2²

d = 19.62m

3. Time of the bag's fall and its velocity immediately before hitting the ground... if it started falling at 2m/s

Reuse the equation from question 2:

d = ViΔt + 0.5aΔt²

Given values:

d = 19.6m (height of the helicopter obtained from question 2)

Vi = 2m/s

a = 9.81m/s² (acceleration due to earth's gravity)

Plug in the values and solve for Δt:

19.6 = 2Δt + 0.5×9.81Δt²

4.91Δt² + 2Δt - 19.6 = 0

Use the quadratic formula to get values of Δt (a quick Google search will give you the formula and how to use it to solve for unknown values):

Δt = 1.8s, Δt = −2.2s

The formula gives us 2 possible answers for Δt but within the situation of our problem, only the positive value makes sense. Reject the negative value.

Δt = 1.8s

Now we can use this new value of Δt to get the velocity before hitting the ground:

Vf = Vi + aΔt

Given values:

Vi = 2m/s

a = 9.81m/s²

Δt = 1.8s (result from previous question)

Plug in the values and solve for Vf:

Vf = 2 + 9.81×1.8

Vf = 19.66m/s

4 0
3 years ago
Other questions:
  • How will the gravitational force on a piece of the surface of the star (m1) by the mass of the rest of the star (m2) (effectivel
    15·2 answers
  • I need help with this
    7·2 answers
  • PLZ HELP!!!!
    9·2 answers
  • Hi please may someone help me especially on the sketch part.
    12·1 answer
  • One student runs with a velocity of +10 m/s while a second student runs with a velocity of –10 m/s. Which student has the faster
    13·1 answer
  • Help with these questions
    5·1 answer
  • A mechanic pushes a 3540 kg car from rest to a speed of v, doing 4864 J of work in the process. Find the speed v. Neglect fricti
    15·1 answer
  • Optimists usually have a higher degree of wellness than pessimists.<br> O True<br> False
    15·1 answer
  • Find the minor measurement of the vernier scale by taking 49, 1mm divisions of the main scale and dividing it into 50 vernier di
    10·1 answer
  • The same girl in number 3 (above) pushes another friend on the same skateboard.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!