Answer:
0.35
Explanation:
According to Newton's second law;
\sum Fx = ma
Fm - Ff =ma
Fm is the moving force = Wsin theta
Fm = 4(9.8)sin55
Fm = 32.1N
Ff is the frictional force = nmgcos theta
Ff = n(4)(9.8)cos55
Ff = 22.48n
Acceleration a = 6.0m/s²
Substitute the given values into the formula and get the coefficient of friction
32.11-23.48n = 4(6)
32.11-24= 23.48n
8.11 = 23.48
n = 8.11/23.48
n = 0.35
Hence the coefficient of friction is 0.35
That process is called the Miranda rights
Water<span> is </span>denser<span> than </span>alcohol<span> because its molecules can pack tightly together, which means that it has </span>more<span> mass in the same volume than </span>alcohol<span> </span>
Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
All it does is lets him pull in a more convenient direction to raise the load. It has no effect on the required force.