Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
Answer:
Explanation:
DetaM=4 x 1.02875 - 4.002603
DetaM= 0.028697u
Using E= mc²
= 0.028697 x 1.49x*10^-10
= 4.2x10^-12J
I️ would say agility. Although, speed could also be an answer.
Elements to the left tend to form positive ions is the right answer mark me brainlist
Answer:
kinetic and potential energy). The opposite is true when you remove thermal energy: Particles move slower (less kinetic energy). Particles get closer together (less potential energy)