<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
The answer is A because the paper does not change its chemical properties only changes the way it looks.
Kinetic energy is energy that a body possesses by virtue of being in motion, there for if an object is moving, it has kinetic energy.
Example; A roller coaster sitting on top of hill has potential energy. When it starts to move and is going down the hill, it has kinetic energy. :)
Answer: The work is 1863 N*m
Explanation:
We can define work as:
W = F*d
Where F is the force that the mover needs to apply to the refrigerator, and d is the distance that the refrigerator is moved.
To move the refrigerator, the minimal force that the mover needs to do is exactly the friction force (In this case, the refrigerator will move with constant speed).
Then we will have:
F = 230 N
and the distance is 8.1 meters, then the work will be:
W = 230N*8.1 m = 1863 N*m