Answer:
8.70 liters
Explanation:
First we <u>convert 36.12 g of AI₂O₃ into moles</u>, using its <em>molar mass</em>:
- 36.12 g ÷ 101.96 g/mol = 0.354 mol AI₂O₃
Then we <u>convert AI₂O₃ moles into O₂ moles</u>, using the stoichiometric coefficients of the reaction:
- 0.354 mol AI₂O₃ *
= 0.531 mol O₂
We can now use the <em>PV=nRT equation</em> to <u>calculate the volume</u>, V:
- 1.4 atm * V = 0.531 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 280.0 K
1) d
2) b because the independent variable is the thing you change/control in an experiment
3) c because the dependent variable is the thing being measured in an experiment
4)hmm it might be d, as c and a are both correct as different sized feeders would make it an unfair test and different types of food would as well
5) c
6) a
7) b obviously because if he activated them at different times then the ones activated last would have an advantage
Answer: 600 mL
Explanation:
Given that;
M₁ = 5.85 m
M₂ = 1.95 m
V₁ = 200 mL
V₂ = ?
Now from the dilution law;
M₁V₁ = M₂V₂
so we substitute
5.85 × 200 = 1.95 × V₂
1170 = 1.95V₂
V₂ = 1170 / 1.95
V₂ = 600 mL
Therefore final volume is 600 mL
Beaker does thermometer measures the thermal energy in the air