Answer:
Explanation:
Cubic decimeter is the same unit as liter; so, mole per cubic decimeter is mole per liter, and that is the unit of concentration of molarity. Thus, what is asked is the molarity of the solution. This is how you find it.
1. <u>Take a basis</u>: 1 dm³ = 1 liter = 1,000 ml
2. <u>Calculate the mass of 1 lite</u>r (1,000 ml) of solution:
- density = mass / volume ⇒ mass = density × volume
Here, the density is given through the specific gravity
Scpecific gravity = density of acid / density of water
Take density of water as 1.00 g/ml.
- density of solution = 1.25 g/ml
- mass solution = 1.25 g/ml × 1,000 ml = 1,250 g
3. <u>Calculate the mass of solute</u> (pure acid)
- % m/m = (mass of solute / mass of solution) × 100
- 56 = mass of solute / 1,250 g × 100
- mass of solute = 56 × 1,250g / 100 = 700 g
4. <u>Calculate the number of moles of solute</u>:
- moles = mass in grams / molar mass = 700 g / 70 g/mol = 10 mol
5. <u>Calculate molarity (mol / dm³)</u>
- M = number of moles of solute / liter of solution = 10 mol / 1 liter = 10 mol/liter.
Answer:
2Cu + O2 ----------------> 2CuO
Answer:- 27.7 grams of
are produced.
Solution:- The balanced equation is:

let's convert the grams of each reactant to moles and calculate the grams of the product and see which one gives least amount of the product. This least amount would be the answer as the least amount we get is from the limiting reactant.
Molar mass of
= 207.2+2(126.90) = 461 gram per mol
let's do the calculations for the grams of the product for the given grams of each of the reactant:

= 

= 
From above calculations, NaI gives least amount of
, so the answer is, 27.7 g of
are produced.