Answer:
Rate will double
Explanation:
Since the concentration of A is doubling the rate of reaction will also double, since in this scenario concentration is proportional to rate of reaction. So if the concentration of A were to triple the rate of reaction would also triple.
Answer:
1.55×10²² molecules.
Explanation:
We'll begin by calculating the number of mole in 5.32 g of pure lead (Pb). This can be obtained as follow:
Mass of Pb = 5.32 g
Molar mass of Pb = 207 g/mol
Mole of Pb =?
Mole = mass /molar mass
Mole of Pb = 5.32/207
Mole of Pb = 0.0257 mole
Finally, we shall determine the number of molecules in 0.0257 mole of Pb. This can be obtained as follow:
From Avogadro's hypothesis,
I mole of Pb contains 6.02×10²³ molecules.
Therefore, 0.0257 mole will contain = 0.0257 × 6.02×10²³ = 1.55×10²² molecules.
Therefore, 5.32 g of pure lead (Pb) contains 1.55×10²² molecules.
<span>The symbol for hydronium ion concentration is H+. </span><span>There are quite a few
relationships between [H+] and [OH−]
ions. And because there is a large range of number between 10 to 10</span><span>-15</span><span>
M, the pH is used. pH = -log[H+] and pOH = -log[OH−]. In aqueous solutions, </span><span>[H+
][OH- ] = 10-14. From here we can derive the values of each concentration.</span>
Answer:
hello
Explanation:
do you meant something like that